Professeurs : Nabil ZRIG - Seief Hafnaoui – Ramzi HAJJI

Durée : 2 heures Le 04/03/2010 Niveau : 2^{ièmme} année Secondaire

Exercice: 1 (7 points)

On considère la suite (u_n) définie par $u_0 = 2$; $u_1 = 1$ et pour tout $n \in IN$ on a $u_{n+1} - 3u_n + 2u_{n-1} = 0$

- 1) Calculer u₂ et u₃.
- 2) a) Vérifier que pour tout $n \in \mathbb{N}$ on a $u_{n+1} 2u_n = u_n 2u_{n-1}$
 - b) En déduire que pour tout $n \in IN$ on a $u_{n+1} 2u_n = -3$
- 3) Soit la suite (v_n) définie pour tout $n \in IN$ par $v_n = u_n + a$ avec 'a' un réel donné.
 - a) Montrer que $v_{n+1} = 2(u_n + \frac{a-3}{2})$
 - b) Déduire la valeur de 'a' pour que (v_n) soit géométrique de raison 2.
- 4) Dans la suite de l'exercice on prendra $\underline{a} = -3$
- a) Montrer que (v_n) est une suite géométrique dont on précisera la raison et le premier terme.
- b) Donner le terme général de (v_n) puis celui de (u_n) en fonction de n.
- 5) Exprimer $S_n = u_0 + u_1 + \dots + u_{n-1} + u_n$ en fonction de n.

Exercice: 2 (8 points)

ABC est un triangle, on pose AB = c AC = b et BC = a. Soit H le projeté orthogonal de A sur (BC).

- 1) Faire une figure claire en prenant les angles Â, B et Ĉ aigus.
- 2) a) Montrer que $b = \frac{a.\sin\hat{B}}{\sin\hat{A}}$ et que $c = \frac{a.\sin\hat{C}}{\sin\hat{A}}$.
 - b) Exprimer BH en fonction de c et B .
 - c) Exprimer CH en fonction de b et Ĉ.
 - d) En déduire que $a = b.\cos\hat{C} + c.\cos\hat{B}$.
- 3) a) En utilisant les questions 2) a) et 2) d) Montrer que $\sin \hat{A} = \sin \hat{B} \cdot \cos \hat{C} + \sin \hat{C} \cdot \cos \hat{B}$
 - b) En déduire que $sin(\hat{B} + \hat{C}) = sin\hat{B}.cos\hat{C} + sin\hat{C}.cos\hat{B}$
- 4) a) Montrer que $\sin(\frac{5\pi}{12}) = \sin\frac{\pi}{6}.\cos\frac{\pi}{4} + \sin\frac{\pi}{4}.\cos\frac{\pi}{6}$
 - b) En déduire que $\cos(\frac{\pi}{12}) = \frac{\sqrt{6} + \sqrt{2}}{4}$ puis montrer que $\sin(\frac{\pi}{12}) = \frac{\sqrt{6} \sqrt{2}}{4}$
- 5) a) Calculer l'aire d'un triangle ABC sachant que $a = \sqrt{2}$, b = 2 et $\hat{C} = \frac{\pi}{12}$.

(on donne
$$S = \frac{1}{2}a.b. \sin \hat{C}$$
)

- b) Utiliser le théorème d'El-Kashi pour montrer que $c = \sqrt{3} 1$.
- c) En déduire la valeur de R le rayon du cercle circonscrit à ABC.

Exercice: 3 (5 points)

ABC est un triangle équilatéral direct inscrit dans un cercle Γ de centre O et de rayon R=3. On note r la rotation directe de centre A et d'angle $\frac{\pi}{3}$.

1) Faire une figure.

- 2) Montrer que $AB = 3\sqrt{3}$. (on rappel que dans un triangle $\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}} = 2R$)
- 3) M est un point de l'arc [AB] ne contenant pas C.
 - a) Construire I = r(M).
 - b) Montrer que IAM est équilatéral.
 - c) Montrer que $I \in [CM]$.
 - d) Montrer que MA + MB = MC.
- 4) On prendra dans la suite de l'exercice $AM = 3\sqrt{2}$.
 - a) Utiliser la loi de sinus dans le triangle ABM pour montrer que $\hat{ABM} = \frac{\pi}{4}$.
 - b) Donner l'angle de la rotation r' de centre A qui transforme M en M' avec M'∈ [AB].

Bon travail